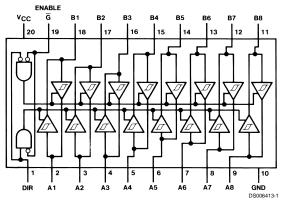


DM74LS245 3-STATE Octal Bus Transceiver

General Description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation minimizes external timing require-

The device allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction control (DIR) input. The enable input (G)can be used to disable the device so that the buses are effectively isolated.


Features

■ Bi-Directional bus transceiver in a high-density 20-pin package

- 3-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at bus inputs improve noise margins
- Typical propagation delay times, port-to-port 8 ns
- Typical enable/disable times 17 ns
- I_{OL} (sink current) 54LS 12 mA 74LS 24 mA
- I_{OH} (source current) 54LS -12 mA 74LS -15 mA
- Alternate Military/Aerospace device (54LS245) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Dual-In-Line Package

Order Number 54LS245DMQB, 54LS245FMQB, 54LS245LMQB, DM54LS245J, DM54LS245W, DM74LS245WM or DM74LS245N See Package Number E20A, J20A, M20B, N20A or W20A

Function Table

Enable G	Direction Control DIR	Operation
L	L,	B data to A bus
L	Н	A data to B bus
Н	Χ	Isolation

H = High Level, L = Low Level, X = Irrelevant

Absolute Maximum Ratings (Note 1)

Supply Voltage 7V Input Voltage

Operating Free Air Temperature Range DM54LS and 54LS

DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

DIR or \overline{G} 7V A or B 5.5V

Recommended Operating Conditions

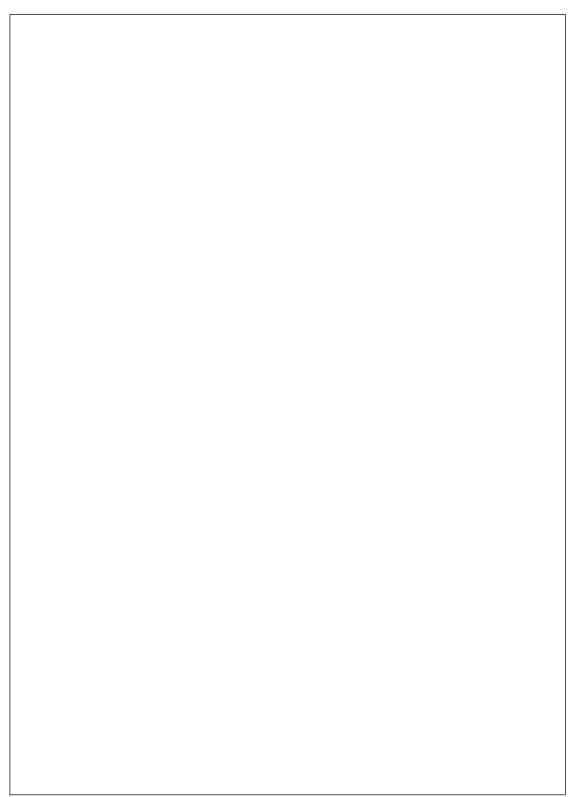
Symbol	Parameter	DM54LS245			Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-12			-15	mA
I _{OL}	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

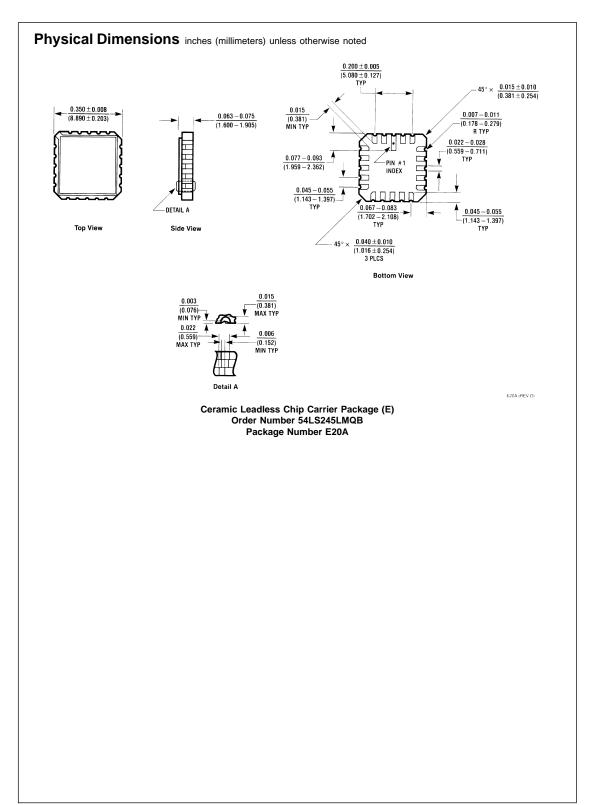
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

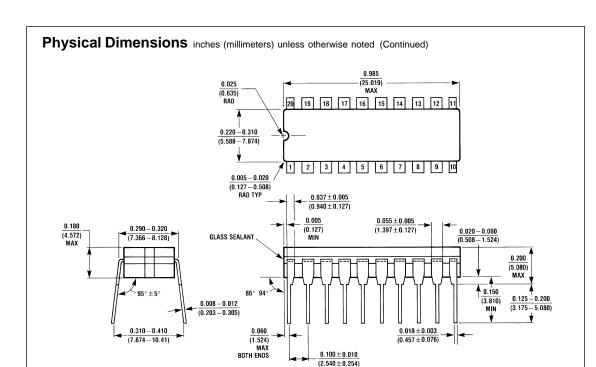
Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

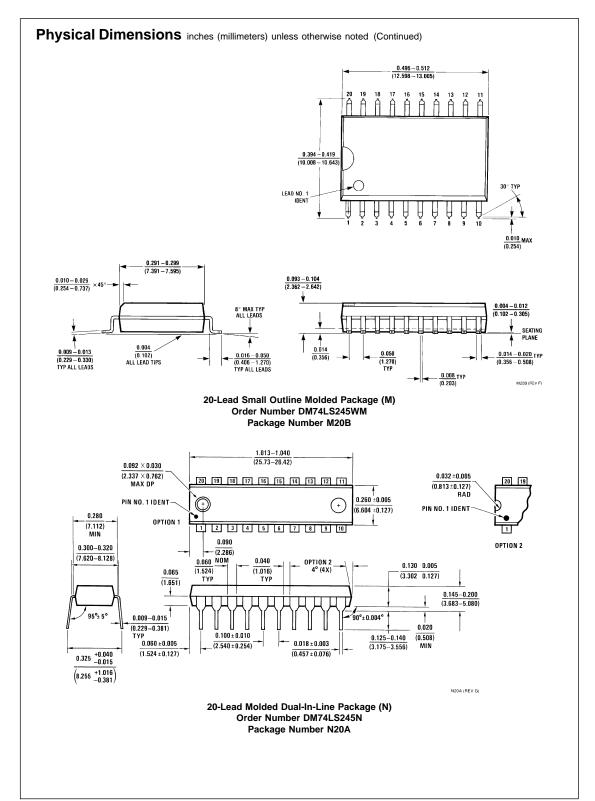
Symbol	Parameter	Conditions			Min	Typ (Note 2)	Max	Units
V _I	Input Clamp Voltage	V _{CC} = Min, I _I =	–18 mA				-1.5	V
HYS	Hysteresis (V _{T+} – V _{T-})	V _{CC} = Min			0.2	0.4		V
V _{OH}	High Level Output Voltage	V _{CC} = Min, V _{IH}	= Min	DM74	2.7			
		V _{IL} = Max, I _{OH}	= -1 mA					
		V _{CC} = Min, V _{IL}	= Min	DM54/DM74	2.4	3.4		V
		V _{IL} = Max, I _{OH}	= -3 mA					
		V _{CC} = Min, V _{IH}	= Min	DM54/DM74	2			
		V _{IL} = 0.5V, I _{OH}	= Max					
V _{OL}	Low Level Output Voltage	V _{CC} = Min	I _{OL} = 12 mA	DM74			0.4	
		V _{IL} = Max	I _{OL} = Max	DM54			0.4	V
		V _{IH} = Min		DM74			0.5	
I _{OZH}	Off-State Output Current,	V _{CC} = Max	V _O = 2.7V				20	μA
	High Level Voltage Applied	V _{IL} = Max						
I _{OZL}	Off-State Output Current,	V _{IH} = Min	$V_{\rm O} = 0.4 V$				-200	μA
	Low Level Voltage Applied							
I ₁	Input Current at Maximum	V _{CC} = Max	A or B	V _I = 5.5V			0.1	mA
	Input Voltage		DIR or G	V _I = 7V			0.1	
I _{IH}	High Level Input Current	V _{CC} = Max, V _I	= 2.7V				20	μA
I _{IL}	Low Level Input Current	V _{CC} = Max, V _I = 0.4V					-0.2	mA
Ios	Short Circuit Output Current	V _{CC} = Max (No	te 3)		-40		-225	mA
I _{cc}	Supply Current	Outputs High		V _{CC} = Max		48	70	
		Outputs Low]		62	90	mA
		Outputs at Hi-Z]		64	95	1

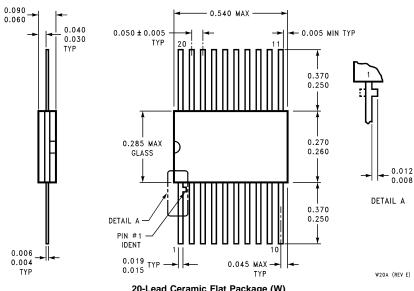

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.


Note 3: Not more than one output should be shorted at a time, not to exceed one second duration


Switching Characteristics $V_{CC} = 5V, T_A = 25^{\circ}C$

			DM54/74 LS245		
Symbol	Parameter	Conditions			Units
			Min	Max	
t _{PLH}	Propagation Delay Time, Low-to-High-Level Output			12	ns
t _{PHL}	Propagation Delay Time, High-to-Low-Level Output	C _L = 45 pF		12	ns
t _{PZL}	Output Enable Time to Low Level	$R_L = 667\Omega$		40	ns
t _{PZH}	Output Enable Time to High Level]		40	ns
t _{PLZ}	Output Disable Time from Low Level	C _L = 5 pF		25	ns
t _{PHZ}	Output Disable Time from High Level	$R_L = 667\Omega$		25	ns
t _{PLH}	Propagation Delay Time, Low-to-High-Level Output			16	ns
t _{PHL}	Propagation Delay Time, High-to-Low-Level Output	C _L = 150 pF		17	ns
t _{PZL}	Output Enable Time to Low Level	$R_L = 667\Omega$		45	ns
t _{PZH}	Output Enable Time to High Level			45	ns


www.fairchildsemi.com



20-Lead Ceramic Dual-In-Line Package (J) Order Number 54LS245DMQB or DM54LS245J Package Number J20A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Ceramic Flat Package (W) Order Number 54LS245FMQB or DM54LS245W Package Number W20A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center

Tel: 1-888-522-5372

Fairchild Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

www.fairchildsemi.com